Understanding and Improving Kernel Local Descriptors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Image Descriptors Using Supervised Kernel ICA

PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discr...

متن کامل

Improving Local Descriptors by Embedding Global and Local Spatial Information

In this paper, we present a novel problem: ”Given local descriptors, how can we incorporate both local and global spatial information into the descriptors, and obtain compact and discriminative features?” To address this problem, we proposed a general framework to improve any local descriptors by embedding both local and global spatial information. In addition, we proposed a simple and powerful...

متن کامل

Understanding and Improving Local Exploration for GBFS

Greedy Best First Search (GBFS) is a powerful algorithm at the heart of many state-of-the-art satisficing planners. The Greedy Best First Search with Local Search (GBFS-LS) algorithm adds exploration using a local GBFS to a global GBFS. This substantially improves performance for domains that contain large uninformative heuristic regions (UHR), such as plateaus or local minima. This paper analy...

متن کامل

Kernel Descriptors for Visual Recognition

The design of low-level image features is critical for computer vision algorithms. Orientation histograms, such as those in SIFT [16] and HOG [3], are the most successful and popular features for visual object and scene recognition. We highlight the kernel view of orientation histograms, and show that they are equivalent to a certain type of match kernels over image patches. This novel view all...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Vision

سال: 2018

ISSN: 0920-5691,1573-1405

DOI: 10.1007/s11263-018-1137-8